Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38693823

RESUMO

Designing high-performance polarization-sensitive photodetectors is essential for photonic device applications. Anisotropic one-dimensional (1D) van der Waals (vdW) materials have provided a promising platform to that end. Despite significant advances in 1D vdW photonic devices, their performance is still far from delivering practical potential. Herein, we propose the design of high-performance polarization-sensitive photodetectors using unique 1D vdW materials. By leveraging the chemical vapor transport technique, we successfully fabricate high-quality 1D vdW Nb2Pd1-xSe5 (x = 0.29) nanowires. The 1D vdW Nb2Pd1-xSe5 photodetector exhibits a high mobility of ∼56 cm2/(V s) and superior photoresponse performance, including a high responsivity of 1A/W and an ultrafast response time of ∼8 µs under 638 nm illumination. Moreover, the 1D vdW Nb2Pd1-xSe5 photodetector demonstrates excellent polarization-sensitive photoresponse with a degree of linear polarization (DOLP) up to 0.85 and can be modulated by adjusting the gate voltage, laser power density, and wavelength. Those exceptional performance are believed to be relevant to the symmetry-reduction induced by the partial occupation of Pd sites. This study offers feasible approaches to enhance the anisotropy of 1D vdW materials and the modulation of their polarization-sensitive photoresponse, which may provide deep insights into the physical origin of anisotropic properties of 1D vdW materials.

2.
Nanotechnology ; 35(5)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37879318

RESUMO

Achieving high sensitivity in gas sensors is crucial for the precise detection of toxic agents. However, this can be challenging as it requires gas sensors to possess both a high response signal and low electrical noise simultaneously, which seems controversial as it necessitates adopting semiconductors with different bandgaps. Herein, we demonstrate the superior sensitivity of 2D molybdenum disulfide (MoS2)/tellurium (Te) van der Waals heterostructure (vdWH) gas sensors fabricated by combining narrow-bandgap (Te) and wide-bandgap (MoS2) semiconductors. The as-fabricated MoS2/Te vdWH gas sensors exhibit excellent sensitivity that is unavailable for sensors based on its individual counterparts. The response toward 50 ppm NH3is improved by two and six times compared to the individual MoS2and Te gas sensors, respectively. In addition, a high signal-to-noise ratio of ∼350 and an ultralow limit of detection of ∼2 ppb are achieved. These results outperform most previously reported gas sensors due to the efficient modulation of the barrier height of the MoS2/Te p-n junction as well as the synergistic effect benefiting from the low electric noise of the narrow-bandgap Te and high response signal of the wide-bandgap MoS2. Our work provides an insight into utilizing vdWHs based on narrow-wide bandgap semiconductors for developing highly sensitive gas sensors.

3.
Nat Commun ; 14(1): 5873, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735469

RESUMO

Cubic materials host high crystal symmetry and hence are not expected to support anisotropy in transport phenomena. In contrast to this common expectation, here we report an anomalous anisotropy of spin current can emerge in the (001) film of Mn3Pt, a noncollinear antiferromagnetic spin source with face-centered cubic structure. Such spin current anisotropy originates from the intertwined time reversal-odd ([Formula: see text]-odd) and time reversal-even ([Formula: see text]-even) spin Hall effects. Based on symmetry analyses and experimental characterizations of the current-induced spin torques in Mn3Pt-based heterostructures, we find that the spin current generated by Mn3Pt (001) exhibits exotic dependences on the current direction for all the spin components, deviating from that in conventional cubic systems. We also demonstrate that such an anisotropic spin current can be used to realize low-power spintronic applications such as the efficient field-free switching of the perpendicular magnetizations.

4.
Phys Rev Lett ; 130(21): 216702, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37295086

RESUMO

Ferromagnets are known to support spin-polarized currents that control various spin-dependent transport phenomena useful for spintronics. On the contrary, fully compensated antiferromagnets are expected to support only globally spin-neutral currents. Here, we demonstrate that these globally spin-neutral currents can represent the Néel spin currents, i.e., staggered spin currents flowing through different magnetic sublattices. The Néel spin currents emerge in antiferromagnets with strong intrasublattice coupling (hopping) and drive the spin-dependent transport phenomena such as tunneling magnetoresistance (TMR) and spin-transfer torque (STT) in antiferromagnetic tunnel junctions (AFMTJs). Using RuO_{2} and Fe_{4}GeTe_{2} as representative antiferromagnets, we predict that the Néel spin currents with a strong staggered spin polarization produce a sizable fieldlike STT capable of the deterministic switching of the Néel vector in the associated AFMTJs. Our work uncovers the previously unexplored potential of fully compensated antiferromagnets and paves a new route to realize the efficient writing and reading of information for antiferromagnetic spintronics.

5.
Natl Sci Rev ; 9(12): nwac020, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36694799

RESUMO

The second-order nonlinear Hall effect observed in the time-reversal symmetric system has not only shown abundant physical content, but also exhibited potential application prospects. Recently, a third-order nonlinear Hall effect has been observed in MoTe2 and WTe2. However, few-layer MoTe2 and WTe2 are usually unstable in air and the observed third-order nonlinear Hall effect can be measured only at low temperature, which hinders further investigation as well as potential application. Thus, exploring new air-stable material systems with a sizable third-order nonlinear Hall effect at room temperature is an urgent task. Here, in type-II Weyl semimetal TaIrTe4, we observed a pronounced third-order nonlinear Hall effect, which can exist at room temperature and remain stable for months. The third-order nonlinear Hall effect is connected to the Berry-connection polarizability tensor instead of the Berry curvature. The possible mechanism of the observation of the third-order nonlinear Hall effect in TaIrTe4 at room temperature has been discussed. Our findings will open an avenue towards exploring room-temperature nonlinear devices in new quantum materials.

6.
Sci Bull (Beijing) ; 65(7): 531-537, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659184

RESUMO

Based on the tight-binding calculations on honeycomb lattice and photonic experimental visualization on artificial graphene (AG), we report the domain-wall-induced gapped topological kink states and topological corner states. In honeycomb lattice, domain walls (DWs) with gapless topological kink states could be induced either by sublattice symmetry breaking or by lattice deformation. We find that the coexistence of these two mechanisms will induce DWs with gapped topological kink states. Significantly, the intersection of these two types of DWs gives rise to topological corner state localized at the crossing point. Through the manipulation of the DWs, we show AG with honeycomb lattice structure not only a versatile platform supporting multiple topological corner modes in a controlled manner, but also possessing promising applications such as fabricating topological quantum dots composed of gapped topological kink states and topological corner states.

7.
Inorg Chem ; 58(14): 9036-9042, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31246443

RESUMO

An excitonic insulating (EI) state is a fantastic correlated electron phase in condensed matter physics, driven by screened electron-hole interaction. Ta2NiSe5 is an excitonic insulator with a critical temperature (TC) of 328 K. In the current study, temperature-dependent Raman spectroscopy is used to investigate the phonon vibrations in Ta2NiSe5. The following observations were made: (1) an abnormal blue shift around TC is observed, which originates from the monoclinic to orthorhombic structural phase transition; (2) the splitting of a mode and two new Raman modes at 147 and 235 cm-1 have been observed with the formation of an EI state. With the help of first-principles calculations and temperature-dependent X-ray diffraction (XRD) experiments, it is found that the TaSe6 octahedra are "frozen" and the NiSe4 tetrahedra are greatly distorted below TC. Thus, it seems that the distortion of NiSe4 tetrahedra plays an important role in the strong electron-phonon coupling (EPC) in Ta2NiSe5, while the strong EPC, coupled with electron-hole interaction, opens the energy gap to form the EI state in Ta2NiSe5.

8.
J Phys Condens Matter ; 30(47): 475702, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30378570

RESUMO

Two-dimensional (2D) semiconductors SnP3 are predicted, from first-principles calculations, to host moderate band gaps (0.72 eV for monolayer and 1.07 eV for bilayer), ultrahigh carrier mobility (∼104 cm2 V-1 s-1 for bilayer), strong absorption coefficients (∼105 cm-1) and good stability. Moreover, the band gap can be modulated from an indirect character into a direct one via strain engineering. For experimental accessibility, the calculated exfoliation energies of monolayer and bilayer SnP3 are smaller than those of the common arsenic-type honeycomb structures GeP3 and InP3. More importantly, a semiconductor-to-metal transition is discovered with the layer number N > 2. We demonstrate, in remarkable contrast to the previous understandings, that such phase transition is largely driven by the correlation between lone-pair electrons of interlayer Sn and P atoms. This mechanism is universal for analogues phase transitions in arsenic-type honeycomb structures (GeP3, InP3 and SnP3).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...